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Abstract 
Software-based implementations of H.263 and MPEG- 
2 video standards are well documented, recently 
reporting faster than or close to real-time performance. 
Since the complexity of MPEG-4 is higher than its 
predecessor standards, real time video encoding and 
decoding can exhaust computational resource without 
achieving real-time speed. In this paper, we report a 
software-based real-time MPEG-4 video codec 
(encoder and decoder) on a single-processor PC, with 
no frame-skip, or profile simplifying tricks, or quality 
loss compromise. The proposed codec is an 
embodiment of a number of novel algorithms. 
Specifically, we have designed a fast binary shape 
coding algorithm, a fast motion estimation algorithm, 
and a technique for detection of all-zero quanitzed 
blocks. To enhance the computation speed, we harness 
Intel's SIMD (Single Instruction Stream, Multiple Data 
Stream) instructions to implement these algorithms. On 
the 800 MHz Intel Pentium 111, our decoder can play 
real-time CIF video with less than 20% system resource 
consumption; and our encoder realizes up to 70 frames 
per second for CIF resolution video, with the similar 
picture quality as the reference software. 

1. Introduction 
Due to improved coding efficiency and functionality of 
MPEG-4, a number of new applications using digital 
video, such as video conferencing, Internet video 
games or digital TV, are emerging on common PC as 
well as hand-held devices. For such application, 
efficient software encoding and decoding is highly 
desirable. 

Compared to its predecessor standards, MPEG-4 
has a number of additional coding modules that 
exacerbate its coding complexity. MPEG-4 supports 
arbitrary shape object based encoding described by 
alpha map. Multilevel alpha maps are frequently used 
to blend different layers of image sequences for the 
final film. Coding of texture for arbitrarily shaped 
regions is required for achieving an efficient texture 
representation for arbitrarily shaped objects. In 
addition, MPEG-4 provides multifunctional coding 
tools and algorithms that provide tools to support a 
number of content based as well as other 
knctionalities. MPEG-4 video group has developed 
Video Verification Models (VMs), which has evolved 

by means of core experiments. The VM is a common 
platform with a precise definition of encoding and 
decoding algorithms that can be presented as tools 
addressing specific fknctionalities. New 
algorithms/tools are added to the VM and old 
algorithms/tools are replaced in the VM by successfkl 
core experiments [ 11. 

The introduction of arbitrary shape object encoding 
and higher compression efficiency incur significant 
additional computational complexity and requirements. 
The speed of latest VM is still very slow and is far from 
practical applications. Based on our testing, the 
encoding speed for CIF format video (rectangular 
frame) is usually less than 2 frames per second on 
Pentium Ill 800 MHz processor and Windows 2000 
(CIF size rectangular frame simple head and shoulder 
sequences). 
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Fig. 1 : Complexity distribution of MPEG-4 encoder 
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Fig.2: Complexity distribution of MPEG-4 decoder 

The design of a fully standard-compliant MPEG-4 
codec that can achieve real-time speed entails 
optimizations at all levels, including designing new 
algorithms for intra and inter VOP coding, software 
implementation with efficient data structures, and 
enhancing computation speed by all possible methods 
such as taking advantage of the machine architecture. 
Using profiling tools, the complexity of various 
modules of MPEG-4 video encoder and decoder with 
CIF size sequences are evaluated and depicted in Fig.1 
and Fig.2. For the encoder, motion estimation occupies 
the largest portion of the complexity pie, while FDCT 
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and IDCT hold the second position, followed by 
quantization and dequantization (QUAN and 
DEQUAN) and shape encoding. For the decoder, 
IDCT, dequantization, BAB decoding and motion 
compensation consume most of computational 
resource. 

In this paper, we report a software-based real-time 
MPEG-4 video codec on a single-processor PC, with 
no frame-skip, or profile simplifying tricks, or quality 
loss compromise. The proposed codec is an 
embodiment of a number of novel algorithms, such as 
fast binary shape coding algorithm, a fast motion 
estimation algorithm, and a technique for detection of 
all-zero quanitzed blocks, etc. To enhance the 
computation speed, we harness Intel’s instructions to 
implement these algorithms. 

The remainder of this paper is In Section 2 we 
describe the optimization of MPEG-4 decoder. Section 
3 explains the optimising techniques for MPEG-4 
encoder. Section 4 includes the benchmark and 
comparison results. Section 5 concludes the paper with 
some summarizing remarks. 

2. Optimization for MPEG-4 Decoder 
Some papers have reported how to optimize MPEG-4 
decoder, but most of the reported work is for a limited 
range of optimizations, such as IDCT [2], [3],  and 
without the utilization of MMX technology. 

In order to identify the modules with major 
computationally complexity, we have profiled the 
reference software MPEG-4 decoder. These 
experiments are done with streams in the core 
profile@level 2. The size of GOV is 15, and there exist 
4 PVOPs between IVOPs, 2 BVOPs between reference 
VOPs. By the order of complexity, we list the modules 
with major computational intensity in the following: 
shape decoding, texture decoding, motion 
compensation, VLC codeword decoding, disk access or 
display, etc. 

2.1 Improvements in Shape Decoding 
The computation of context information for pixels in 
the binary alpha block (BAB) is the most complex part 
of shape decoding. Contexts are obtained using the 
neighbouring pixel information. There are two types of 
contexts: INTRA and INTER. In the case of INTRA 
context computation, 10 neighbouring pixels are loaded 
to form a template. In the case of INTER context, 9 
pixels from current and reference VOPs are loaded. 

To compute a 10-bit INTRA context, we need to 
make 10 memory accesses for neighbouring pixels, and 
test if they are opaque or transparent. If a pixel is 
opaque, it is placed in current context location using the 
shift operation; otherwise, a transparent pixel is 
ignored. 

Since the template is moved from left to right and 
from top to bottom, we can use three 3 64-bit registers 

(SIMD registers) to store their values, and keep moving 
in and moving out to form a new template. And use 
SIMD comparison and shift instructions to calculate the 
context. The advantage of this method is reduced 
memory access and improved efficiency of SIMD 
instruction’s parallel processing. 

2.2. Optimizing the Texture Decoding 
The texture decoding procedure consists of decoding 
macroblock header, decoding DCT coefficients from 
VLC codeword, dequantization, and inverse DCT 
(IDCT), etc. According to profiling analysis, the IDCT 
and dequantization have the highest complexity for 
texture decoding. 

In the dequantization processing, the VLC decoded 
DCT elements is multiplied by the product of 
quantization scale factor and the quantization matrix. 
To improve the speed the multiplication results can be 
pre-computed and stored. The quantization scale factor 
is used as an index to retrieve the pre-multiplication 
value. Thus the number of multiplication steps is 
reduced for each non-zero coefficient. The IDCT 
processing is improved by SIMD instructions and AAN 
algorithm. 

2.3. Motion Compensation 
Motion compensation includes three major functions: 
pixel upsampling, data copy, and pixel compensation. 
Pixel upsampling is necessary for half-pixel motion 
compensation. Pixel values are typically stored as 8-bit 
unsigned characters. In order to apply SIMD 
instruction, the upsampling has to be implemented with 
8-bit quantities, and 8 upsampled pixels can be 
obtained in one process. In upsampling, after division 
by 2 (or 4), two (or four) 8-bit quantities are 
accumulated into a new 8-bit quantity. In order to 
minimize accuracy loss, a compensation value can be 
added to accumulated value. 

Data copy also benefits from 64-bit long SIMD 
register. Using SIMD data move instruction, 8 pixels 
can be moved at the same time. Similarly, pixel 
compensation can take benefit from SIMD processing. 
The problem arises when the data types are unmatched 
during the addition of the delta data to the reference 
VOP. Pixel values in reference VOP are stored as 8-bit 
quantities but the delta data from IDCT are 16-bit 
quantities. Before the addition, the 8-bit reference 
pixels are unpacked into 16-bit quantities, and added 
with 16-bit delta data. Then, we pack the 16-bit 
quantities back to 8-bit with saturation. The motion 
compensation can be executed in a similar fashion. 

3. Optimization for MPEG-4 Encoder 
Compared to the decoder, the optimisation of MPEG-4 
encoder is much more difficult due to several additional 
operations such as motion estimation, FDCT, QUANT, 
and mode decision, etc. However, implementation of 
the encoder has more room for improvement since the 
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standard only defines the syntax and methods for 
decoder and is more flexible for the encoder. 

According to profiling results, the most 
computational intensive module is motion estimation, 
which is followed by FDCT/IDCT, QUANDEQUAN 
and shape encoding. The optimization for shape 
encoding is similar with what have been done for 
decoder. This section focuses on fast motion estimation 
and prediction of all-zero block. 

3.1. Fast Motion Estimation 
Motion estimation (ME) is the most important part of 
the MPEG-4 encoder, since it could significantly affect 
the output quality of the encoded sequence. This is also 
the most complex part with an overwhelming 
computational complexity compared with the other 
parts of the encoding process. In our testing, with +16 
search window, motion estimation with full search can 
swallow more than 90% of processing resource. A 
myriad of algorithms exist to improve the speed and 
performance of motion estimation, such as the three- 
step search, new three-step search, 2-D logarithmic 
search, conjugate directional search and hierarchical 
search [4], [5], [6], etc. The MPEG-4 Part-7 has 
adopted MVFAST (motion vector field adaptive fast 
search technique) as the core technology for fast 
motion estimation [7]. MVFAST can achieve 
substantial speedup comparing with full search. 
However, more efficient motion estimation is possible. 
We propose a new algorithm, called Adaptive Motion 
Search with Elastic Diamond (AMSED), which is 
considerably faster than MVFAST but yields the same 
picture quality. The main features of AMSED are: 

Adaptive threshold for stationary block; 
Definition of motion vector candidate list (MVCL); 
Detection of MB’s motion difference (MD); 
Motion search with elastic diamond search pattern; 
Adaptive threshold for half-way-stop; 
Keeping the checking point history; 
Adoption motion inertia in temporal domain; 
Interpolated motion vector in motion candidate list 
for BVOP. 

A stationary MB is the one with its motion vector 
at (0, 0). In MVFAST [7], the threshold is 512. In 
AMSED, this threshold is set adaptively according to 
motion of its neighbours. This allows faster and more 
accurate detection of stationary block. 

The motion difference (MD) is determined from a 
list of candidate vectors. The motion vector candidate 
list (MVCL) includes motion vectors from adjacent 
MBs in spatial and temporal domain. Based on the 
observation of smoothness of motion field, MD is 
measured by calculating the maximum difference 
between vectors in MVCL. If the MBs in MVCL 
belong to the same moving object, MD is usually low, 
and the motion vector can be refined within a small 
range around the average vector. If MD is larger than L 
(L = 2 in this paper), AMSED uses the motion inertia 

property by testing MVs within the search range in the 
reference VOP; the closest predictor (MB position + 
MV) is selected as the MV candidate from the temporal 
domain. 

AMSED uses two search patterns: Large Diamond 
Search Pattern (LDSP) and Small Diamond Search 
Pattern (SDSP). LDSP is used to find raw motion 
vector quickly, and SDSP is used to refine motion 
vector prediction. In the elastic mode, LDSP and SDSP 
may switch between each other. If SDSP is executed 
for a certain number of times, the search pattern 
changes to LDSP. If the center has the minimum SAD 
in the current round of LDSP, the search pattern 
changes to SDSP with the same search center, and so 
on. 

In order to eliminate duplicated checkpoints, 
AMSED keeps track of the checking points that have 
been accessed. An adaptive half-way-stop threshold is 
applied to terminate the motion search once a good 
enough motion vector is obtained. 

3.2. Prediction of All-Zero Blocks 
In MC/DCT framework, forward DCT helps in 
removing the spatial redundancy by concentrating most 
relevant information to the lower coefficients in the 
frequency domain. Quantization is basically a process 
for reducing the precision of the DCT coefficients. The 
quantization process involves division of integer DCT 
coefficient value by integer quantization scales, which 
is chosen to minimize the perceived distortion in the 
reconstructed picture using the principles based on the 
human visual system. In practice, most quantized DCT 
coefficients become zero, with many blocks having all 
of their coefficients become zero. We refer to such a 
block as all-zero block. If such blocks can be detected 
prior to DCT and quantization, the associated 
dequantization and IDCT can be skipped as well. This 
can result in significant saving in the computational 
cost. 

As opposed to the techniques proposed in [SI and 
[9], we combine the properties of DCT transformation 
and quantization of H.263 and MPEG-2 mode, 
respectively. The sum of absolute values (SAV) is 
defined for an 8x8 block that is going to be transformed 
and quantized. 

We use the following criteria to predict all-zero 
blocks in inter-coded blocks: 

For H.263 quantization for non-intra block, if SAV 
<: 20Q, this block is determined to be all zero block; 
For MPEG quantization for non-intra block, if SAV 
< 16Q, this block is determined to be all zero block. 
Based on our experiments, we observe more than 

half of the blocks in PVOP and BVOP are skipped as 
all zero blocks. 
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’ . 4. Performance Comparison 
We have tested our decoder and encoder on various 
processors. The results reported here are based on an 
Intel Pentium I11 800 MHz processor running Windows 
2000. The decoding speeds of reference decoder and 
our optimised decoder are compared in Table 1. For the 
encoder, the first VOP is IVOP, and the rest of the 
VOPs are predicted. There are two BVOPs between 
reference VOPs. The quantization scales are fixed for 
different type of VOPs; they are 10 for IVOP, 12 for 
PVOP and 16 for BVOP. We compare both the 
compression ratios and encoding frame rates (no rate 
control is used in these experiments). The experiment 
results are shown in Table 2. 

5. Conclusions 
In addition to the techniques mentioned above, we have 
also improved 4-MV motion estimation, half-pixel 
motion estimation, motion compensation, best- 
bounding box finding, upsampling, fast DCT & IDCT, 
and SIMD implementation, etc. Based on the proposed 
techniques in this paper, the optimized decoder can 
achieve real-time speed with less than 20% 
computational resource consumption; and our software 
based MPEG-4 encoder can encode CIF resolution 
video at faster than real-time speed without loss of 
quality and compression efficiency. 
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Table 1: Comparison of the reference MPEG-4 VM video decoder and our optimized decoder for 
core profile @ level 2 (2 BVOPs between IVOPs or PVOPs) 

Speed (fps) 
Frames 

Foreman Rectangular 
News2 Arbitrary 300 
Stefan 37 148 

Table 2: Comparison of the reference MPEG-4 VM video encoder and our optimized 
encoder for core profile @ level 2 (2 BVOPs between IVOPs or PVOPs) 
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